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Abstract
This paper theoretically investigates the stability of circumferential
laminar dusty flow between two coaxial rotating circular cylinders.
The reaction of the system to infinitesimally small axisymmetric
perturbations is examined under the assumptions that relaxation time
is small and the sedimentation velocity is negligible. The results include
the stability of oscillatory modes, stability of non-oscillatory modes
under the condition  and non-existence of neutral modes.
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Introduction
The problem of the stability of circumferential laminar flows between two coaxial circular

cylinders has a vast history. Rayleigh[1] provided the necessary and sufficient criterion of stability
on physical grounds and Synge[2] gave the first analytical proof of Rayleigh’s criterion of stability.
Saffman[3] gave a formulation of the problem of linearised stability of a plane parallel flow of a dusty
gas. The effect of dust is described by two parameters: the concentration of dust and a relaxation
time. A number of physical situations are associated with the flow of dusty flow between two
rotating cylinders. Such type of flow has been discussed by Greenspan[4], Ungarish[5]. Gireesha
and Madhura[6] examined unsteady flow of a dusty fluid through porous media between annulus of
two hexagonal channels. N. Dutta etl.[7] discussed the Pulsatile flow and heat transfer of dusty fluid
through an infinitely long annular pipe.  Saha etl.[8] investigated natural convection of dusty
nanofluids in an annulus. The present problem to the best of our knowledge has not been discussed
so far. The basic assumptions that we make in simplifying the model are:

(i) Gap between two coaxial cylinders is small as compared to their mean radii.
(ii) Perturbations are axisymmetric in nature.
(iii) Relaxation time is small.
(iv) Number density depends upon r.
(v) Velocity of sedimentation is negligible.
These assumptions are examined below with proper justification for each.
The narrow gap approximation is made here for the sake of simplifying the basic flow

velocity and also the linearised perturbation equations. This approximation idealises the situation
when the common length of the cylinder is large as compared to their radii and is usually met within
experiments. We shall restrict our attention to the case of axisymmetric perturbations. This is an
important restriction for if non-axisymmetric perturbations are included, new mechanism of instability

may become possible. The relaxation time  measures the rate at which the velocity of dust particles

adjusts to change in the gas velocity and it depends upon the size of the individual particles.
Therefore, for fine dust particle,  will be small as compared to a characteristic time scale associated
with the flows. It has been established by Saffman and others that the fine dust destabilizes and the
coarse dust stabilizes the flow and thus a situation predicted to be stable in the presence of fine dust
particles is expected to remain stable even in the presence of coarse dust particles. Moreover, we are
assuming that the angular velocity of the cell containing dusty fluid is not too high to produce
sedimentation. In view of this, the velocity of sedimentation is small as compared with characteristic
velocity of the flow and therefore can be neglected.
Formulation of the problem

Consider a non-viscous incompressible laminar dusty Couette flow between two coaxial
circular cylinders of radii a and b (b>a) of infinite length with cylindrical polar coordinates (r, ) ,
where the axis of the annulus is assumed to be along z-axis and the dusty flow is in the region . The
motion of the fluid is due to the rotation of circular cylinders.
Governing equation of motion

The equations of motion of an incompressible, non-viscous dusty Couette flow in
cylindrical polar coordinates are:
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For Clean Fluid:
 The equations of momentum are

Equation of incompressibility

Equation of incompressibility

For Dust Particles

Equation of incompressibility

Where

Here t is the time, p the pressure,  the Stoke’s resistance coefficient, r being

the radius of dust particles assumed to be spherical, m and N respectively the mass and the number
density of dust particles, g the magnitude of the acceleration due to gravity and u and v are respectively
the velocity of clean fluid and velocity of dust particles.
Basic State of the motion

The above equations clearly allow the time independent solution (called the basic state) as

          (1)

               (2)

                              (3)

                                                         (4)

                                                   (5)

              (6)

                           (7)

                                        (8)

                                                   (9)
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        (12)

Perturbation Equations

Let  denote respectively the perturbations

in density , pressure p, velocity of clean fluid u and velocity of dust particles v. Linearizing the

equations in perturbations and analysing the perturbations into normal modes of the form

Where  is a constant which is complex in general and k is the real wave

number. After dropping the primes  and using the transformations

and eliminating various physical quantities in favour of , we have

with the boundary conditions

Where                                                                                            and

is the Rayleigh’s discriminant.

Now multiplying equation (12) by  and integrating over the range of r, we get

                                                                                                                                             (13)

Separating real and imaginary parts of equation (13), the real and imaginary parts respectively are

                                                                                                                         (14)

            (10)

                                                                                  (11)

     at and 
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and

Then equation (15) can be written as

We now prove the following theorems:
Theorem I: The oscillatory modes, if exist, are stable.

Proof: For oscillatory modes . Let the modes be oscillatory, then from equation (16)

Since and  are all positive definite integrals, then from equation (17) it clearly ensures that

, so that the oscillatory modes, if exist, are stable.

Theorem II: If  is an increasing function of r, then non-oscillatory modes are stable when

                      

Proof: For non-oscillatory modes, . Let the modes be unstable so that . Then equation

(14) becomes

Since  and  so that .Now the equation (18) is

inconsistent if  Thus above equation will be inconsistent if . Hence non-oscillatory

modes are stable.

Theorem III: If  is a decreasing function of r, then non-oscillatory modes are stable if

Let  ,    and

                                                (16)

                                                                          (17)

                         and .
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Proof: We know that  for non-oscillatory modes and let the modes be unstable so that

 Since  is a decreasing function of r then , therefore, . The

equation (18) will be inconsistent if   and                                                            Hence non-oscillatory

modes will be stable if

Theorem IV: Neutral modes cannot exist.

Proof: Dividing equation (13) by s and separating imaginary part, we have

Let the modes be neutral so that  (here  cannot be zero because there is division by s), then

above equation implies that

Which is not possible. It follows that  cannot be zero. Hence neutral modes cannot exist.
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