Chemical Pesticides and Their Impact on Agriculture and Health-A Review

Dr. Sachchidanand Sharma

Principal Meerut College, Meerut

Dr. Jay Gopal Pandey

Assistant Professor Department of Chemistry National P. G. College Barhalganj, Gorakhpur

Abstract

Population of India more than 67 percent lives in rural areas, where the main occupation of the people is agriculture. Agriculture is the backbone of the India's economy as well as the way of life of Indian people. Agriculture safety and food security are the concern to the growing human population all over the world. The immoderate use of pesticides causes negative effects on agriculture and human health. Farmers can be exposed to pesticides in the treatment of crops, pest control and plants. Pesticide includes a range of compounds such as insecticides, fungicides, herbicides, rodenticides, and nematicides, etc. They are not targeting the pest but non target plants animal (natural enemies) such as predators, parasitoids, pollinators, etc. also affected. The harmful effects of chemical pesticides on non-target pests are the major problem in the environment. Along with nontarget pests, soil organisms like nematodes, microarthropods, earthworms are also disturbed by the use of pesticides in agriculture. Many scientists have reported the effects of pesticides exposure on the health problems like asthma, cancer, respiratory infection, cardiovascular disease, etc. There are several methods to protect human health and agricultural hazards associated with pesticides including pest control strategies in the IPM (Integrated Pest Management) approach, biocontrol and use of environmentfriendly pesticides.

Keywords

Review, Impact, Environment, Non-Target, Pesticides, Predators, Pollinators, Parasitoids, Human Health, Hazardous Effects

Reference to this paper should be made as follows:

Dr. Sachchidanand Sharma, Dr. Jay Gopal Pandey,

Chemical Pesticides and Their Impact on Agriculture and Health-A Review,

Vol. XII, No.2 Article No.28, pp. 218-229 https://anubooks.com/ jgv-vol-xi-no-1-janjune-2021/

https://doi.org/ 10.31995/ jgv.2021.v12i01.028

Introduction

Pests are organism that causes damage to plants, humans other creatures. Pesticide is the substance that is used to control undesired insects, weeds, rodents, fungi, bacteria and other organism (Muller, 2018; Karise and Mand 2015). Approximate more than 90 percent of insecticides and herbicides reach other place than their target species because they sprayed entire agricultural fields which are harmful to non-target species. Although chemical pesticides are very costly but regardless of the high costs, the widespread use of chemical pesticides has been preferred because they provide high production in agriculture due to the protecting crops from pest damage. On the other hand, pesticides create serious problems to human health (Kumar et al., 2012; Jeephet et al., 2016; Richardson et al., 2017) and agriculture (Aktar et al., 2009; Magee, 1964). Farmers who handling of pesticides, are at high risk of exposure to pesticides when they apply and work in the field (Soares and De Souza 2009, Damalas and Eleftherohorinos, 2011). In some cases farmers face a critical situation by the use of toxic chemicals that are banned, applying incorrect techniques, improper spraying apparatus, insufficient storage practice, reuse ofpesticide containers, and applying unsafe methods due to lack of knowledge (Jallow et al., 2017). The human health range connected with pesticides is from short-term effects such as headaches, skin irritation dizziness and vomiting to chronic effects such as cancers, respiratory disease, asthma and endocrine disruption (Bourguet and Guillemoud, 2016; Stamati et al., 2016;). Furthermore, immoderate use of different kinds of pesticides may cause the demolition of biodiversity, demolition of non-target species, water, soil and air contamination (Recena et al., 2006; Mitra and Raghu, 1998). The aim of this review is to discuss about the hazardous effect of pesticides on human health and agriculture.

Impact of Pesticide on Insect Natural Enemies

All crops are infected by different pests but some of them are controlled by biologically and chemically. All arthropods including insects and their close relatives serve as food for other organism such as predators, parasitic insects, microorganisms, birds, insect-eating mammals and plants. Insects that use arthropods as a resource are called natural enemies and biological control agents (Karen and Theiling, 1988). Natural enemies are helpful to keep plant-feeding insects from damaging population levels but when pesticides are used to control one pest, cause outbreak of other pest because of the chemical destruction of natural enemies.

Predators

A predator is an organism that kills and eats another organism (Angeliki et al., 2015; Rasmussen et al., 2013). These are usually active because they hunt their

prey and kill them (Theiling and Croft, 1988). Therefore predators are an important part of a natural control program for agriculture (Sasmal et al., 2017; Bueno et al., 2017). Some predators like spiders, predatory mites, ground beetles, ladybird beetles, predatory bugs, robber flies and syrphid fly larvae are found in the agriculture (Johnson et al., 2013). Although, the combination of chemicals and biological controlare helpful for the attainment of an integrated pest management (IPM) program but pesticides destroy the ecological balance and kill natural enemies. The harmful effect of pesticides on predators are in some conditions such as by direct contact of spray droplets, by uptake of residues, feed of contaminated food like host, nectar, honeydew etc. (Hanlon and Relyea, 2013; Ngin et al., 2017).

Predators	Prey
Amoebae	Soilborne fungi, bacteria
Anthocorid bugs	Spider mites, thrips, aphids, pear psylla, various insect eggs
Bigeyed bugs	Lygus bugs, aphids, leafhoppers, spider mites
Collembola	Fungi
Ladybird beetles	Aphids, scale insects, mealybugs, leaf hopper
Lacewings	Aphids, scale, insects, mealybugs, thrips, mites
Mirid bugs	Spider mites, aphids, leafhoppers, scale insects
Mycophagous mites	Fungi,
Nematodes	Soilborne fungi, bacteria
Predatory mites	Red mites spider mites
Spiders	Pear psylla, aphids, leafhopper
Syrphid flies	Aphids, scale insects
Praying mantis	Aphids, mosquitoes, larger bugs

Table 1 some predators and their preys

Parasitoids

Parasitoids are similar to parasites. Generally, they are smaller and weaken than their host but really kill their host. Parasitoids are depends on or withininsect host for their foods and then ultimately killing the host. They are used as biological control agents it means similar to chemical pesticides but they attain pest management in an environmentally friendly way (Machtinger et al., 2015; Ballal and Verghese, 2015). Different types of beneficial insect parasitoids are wasps, flies, beetles etc. They may be divided into endo or ectoparasitoids and idio or koinobiont. Endoparasitoids live within their host ectoparasitoids on the host's body. Idiobiont parasitoids prevent further development of the host after initially immobilizing such as egg parasitoids, whereas koinobion parasitoids allow the host to continue its

development like larval- pupal parasitoids. Insecticides are effective against target pests but also harmful to parasitoids (Rosenheim and Hoy, 1988).

Parasitoid	Host	
Aphelinid wasps	Aphids, mealybugs, whiteflies	
Tachinid flies	Caterpillars, beetles, butterflies	
Trichogramma wasps	Moth eggs	
Bacillus thuringiensis	Butterfly, moth larvae	
Pseudomonas fluorescens	Fungi	
Polyhedrosis virus	Butterfly, moth larvae	
Trichoderma harzianum	Pythium, rhizoctonia	
Ampelomyces quisqualis	Powdery mildew	
Arthrobytris	Nematodes	
Steinernema	Insect larvae	
Pasteuria penetrans	Nematodes	
Ichneumonid wasps	Caterpillars, beetles, moths	
Braconid wasps	Greenfly, caterpillars	
Chalcid wasps	Whitefly, cabbage caterpillars	

Table 2 Name of some parasitoids with their host

Pollinators and Pesticide

About 80 % of flowering plants need pollinators to survive. Insect are good pollinators of flowering plants, fruit crops such as apples, cherries, pears, plums, peaches, strawberries etc. Different kinds of insects like honey bees, hoverfly, butterfly, beetles, wasps, moth, birds and flies. etc. are good pollinators. Approximately one third part of the pollination is completed by honeybees (Basu and Chakrabarti, 2015). In agriculture, using of pesticides causes loss of insect pollinators and then loss of crops due to shortage of population of pollinators.Pollination is essential for the production of agricultural crops.(Heylen et al., 2010). Many scientists had reported that honeybee population is decrease by use of insecticides such as carbamate, pyrethroid and organophosphorus etc. (Kumar et al., 2018). Pesticide risk is unlimited its toxicity and it becomes fatal to insect. This fatal toxicity is responsible for decrease pollinator individual as well as colonies. (Desneux et al., 2007). It has been reported that bumblebee colonies exposed to imidacloprid and have harmful impacts on fertility(Gill et al., 2012). Many scientists have demonstrated thiamethoxam as a major factor to cause increase mortality (Henry et al., 2012). Other pollinators get exposed to insecticides by residues in pollen and nectar, dew droplets on contaminated plants, soil and water.

Pesticide on Soil Microbes

Soil microorganism plays an important role in plants to provide water, nutrient and break down compounds. Soil microbes have the capacity of biochemical transformation of some elements such as nitrogen, phosphorus, sulphur etc. Plants depend on microbes in the soil to obtain water, soluble nutrients, and break down compounds that enhance plant growth. When pesticides are used on plants, they leaches in to the soil and then they can kill the microorganism living in the soil which are responsible for break down organic material and beneficial in plant growth (Pal et al., 2006; Usman, 2018; Kalia and Gosal, 2011). Use of pesticides and their degraded products may accumulate in the soil ecosystem causes a serious problem to human being and environment (Yousaf et al., 2013; Digrak and Ozcelik, 1998; Prashar and Shah, 2016).

Human Health and Pesticides

Approximate more than five pounds of chemical pesticides are used per year. Pesticides are used in agriculture as well as in homes in form of sprays, powders, poisons to kill cockroaches, mosquitoes, fleas, rats etc. On the bases of their action pesticides can be classified as fungicides, insecticides, herbicides etc. Pesticides are used for the improving the standard of human health by controlling different disease but their long term use has resulted in serious health effects. According to world health organization every year approximate three billion cause of pesticide poisoning and about two lakhs deaths are reported.Pesticides enter the human body by ingestion, inhalation or penetration through skin. But most of the people get harmful effect by pesticide contaminated food (Stachniuk et al., 2017; Popp et al., 2013; Reeves et al., 2019). After the entering in the human body they reach human tissues. Human body have capacity for the excretion of toxins, but in some cases, it retains them by absorption in the circulatory system. If the concentration of pesticides in the body is increased the toxic effect are produced. The effect of pesticides on human health may appear in short time or they may take months or years to manifest and hence are called chronic or long term effects (Mostafalou and Abdollahi, 2013; Ye et al., 2017). Many scientists have reported that human brain is not fully developed until the age of twelve. Therefore they absorb greater amounts of chemicals via their lungs and take in more air, food and water comparison to adults. Children have less capability of fighting with toxic substances.

		agriculture	
Chemical Name	Туре	Health Effect	Used in Aagriculture
Azoxystrobin	Fungicide	Skin redness, eye pain, headache, dizziness, chey6st pain	Grapes, cereals, potatoes, bananas, apples, rice
Boscalid	Fungicide	Headache, dizziness, nausea, vomiting, sore throat, coughing	Crop such as strawberries, beans, stone fruit, root vegetables, carrots, sunflowers
Cyprodinil	Fungicide	Skin and eye irritation,	On cereals, grapes, pome fruit, stone fruit, vegetable, ornamentals
Carbendazim	Fungicide	Poisonous by ingestion and mildly toxic by inhalation	Green beans, strawberries, apple, sweet bell peppers, bananas, green onions
Chlorothalonil	Fungicide	Eye and skin irritation, coughing, cancer	Trees, small fruits, vegetable, ornamentals
Dicloran	Fungicide	Abdominal pain, constipation, diarrhea, nausea, vomiting	On ornamentals, fruit, and vegetable crops such as cucumber, carrots, snap beans, cherries, garlic, onions, potatoes
Fludioxonil	Fungicide	Liver necrosis, increased serum cholesterol, inflammation, cysts in kidney	Fruit such as apples, blackberries, bilberries, dwarf French beans, broad beans, strawberries, pears
Myclobutanil	Fungicide	Nausea, vomiting, coughing, eye and skin irritation	On grapes vegetative crops
Metalaxyl	Fungicide	Eye and skin irritation	Tropical and subtropical crops, soil borne pathogens, downy mildews
Pyraclostrobin	Fungicide	Skin redness, eye pain, weakness, headache, dizziness, chest pain	Variety of fruits such as melons, apples, sunflowers, beans, peppers, cucumbers
Trifloxystrobin	Fungicide	Skin and eye irritation	Control to brown patch, red thread, rust, anthracnose, dollar spot
Thiabendazole	Fungicide	Dizziness, anorexia, nausea, vomiting	Control mold, rot, blight and stain on fruits and vegetables

Table 3 Name of some chemicals, types, harmful effects and used in agriculture

Chemical Pesticides and Their Impact on Agriculture and Health-A Review Dr. Sachchidanand Sharma, Dr. Jay Gopal Pandey

Atrazine	Herbicide	Abdominal pain,	Eliminate noxious
		diarrhea, vomiting, respiratory, digestive, nervous system	weeds in major crops
Fluridone	Herbicide	Eye and skin irritation	Control aquatic weeds in freshwater ponds
Metolachlor	Herbicide	Skin irritation, acute lung injury, anemia, abdominal cramps	Control weeds in corn, soybeans, peanuts, potatoes, cotton, grain sorghum
Oxyfluorfen	Herbicide	Eye, skin, respiratory infection, nausea, dizziness, headache, vomiting	Control broadleaf and grass weeds in fruit, vegetable and ornamentals
Propazine	Herbicide	Muscular weakness, diarehea, labored breathing emaciation	Control broadleaf and annual grasses weeds in sweet sorghum
Pendimethalin	Herbicide	Skin and eye irritant, inhalation of dusts or fumes may be moderately irritating to the linings of the mouth, nose, throat and lungs	Protect crops such as wheat, corn, soybeans potatoes, cabbage, peas, carrots and asparagus
Trifluralin	Herbicide	Allergic skin reaction, redness, irritation of the lining of the mouth, nose, throat, may damage liver, kidney	Control broadleaf weeds on vegetable crops, flowers, cotton, alfalfa, sunflowers, soybeans
Tebuthiuron	Herbicide	Diarrhea, anorexia, increased liver, kidney, thyroid weights	Control weeds in alfalfa, bluegrasses, dock, goldenrod
Acephate	Insecticide	Muscle twitching, weakness, tremor, headache, dizziness, nausea, diarrhea, vomiting	Treat species in fruit, vegetable, vine, protect from biting and sucking insects
Aldicarb sulfone	Insecticide	Nausea, trearing, sweating, headache, weakness, blurred vision	Control spider mites, aphids, fleahopers, lygus, leafminers
Acetamiprid	Insecticide	Diarrhea, vomiting, abdominal pain, eye irritation	Control sucking type insects and spray on cherries, apple, pears, tomatoes
Bifenthrin	Insecticide	Headache, nausea, vomiting, fatigue, diarrhea	Control red fire ants, moths, grasshoppers, mites, spiders, caterpillars, flies

Common la co	Insecticide	Enclasification de access has de	Control line at all in a sta
Coumaphos	Insecticide	Eye irritation, damage body organs	Control livestock insects such as cattle grubs,
		organs	screw worms, lice,
			scabies, flies and ticks
Chloropyrifos	Insecticide	Runny nose, tears,	Control cutworm, corn
emolopymos	misecticide	increased saliva or drooling	rootworm, cockroaches,
		increased same of arosing	grubs, flea beetles, flies,
			termites, fire ants, lice
Cypermethrin	Insecticide	Headache, muscle,	Toxic to bees, fish and
51		weakness, salivation,	aquatic insects,
		shortness of breath	cockroaches, ant
Cyfluthrin	Insecticide	Sweating, rhino rhea,	Control cutworm, ants,
5		tearing, excessive	silverfish, termites, green
		2.	beetles, mosquitoes, fleas,
			flies, corn earworms
Diazinon	Insecticide	Salivation, sweating,	On rice, sugarcane, corn
		headache, diarrhea,	tobacco, potatoes, fruit
		lacrimation, muscle	tree
		twitching	
Diflubenzuron	Insecticide	Coughing, suffocation,	Control leaf eating larvae
		shortness of breath,	of insects such as gypsy
		emphysema, dizziness	moths, mosquito, rust
			mites
Dieldrin	Insecticide	Vomiting, irritation,	Control insect on cotton,
		headache, uncontrolled	corn, citrus crops and kill
		muscle movements	to mosquitoes, locusts
Dichlorvos	Insecticide	Vomiting, diarrhea, fatigue,	On spider mites,
		coma, drowsiness,	caterpillars, white flies,
		headache	thrips, mushroom flies
Dicofol	Insecticide	Weakness, eye and skin	On fruit, vegetable,
		irritation, affect on kidney,	ornamental and field
		liver and central nervous	crops
		system	
Esfenvalerate	Insecticide	Dizziness, burning, itching,	On moths, flies, beetles,
		weakness, temporary	bees
		nervous system	
Fenpropathrin	Insecticide	Eye and skin irritation,	Control mites in fruit and
		creeping on skin, sensation	vegetation
		of prickling	
Fluvalinate	Insecticide	Sneezing, throat irritation,	On honey bees for varroa
		coughing, itching or	mites
		burning sensations nausea,	
		headache	
Flonicamid	Insecticide	Consciousness disturbance,	Control hemipterous,
		shock, respiratory failure,	sucking insects such as
x · · · · · · ·		pneumonia	aphids and whiteflies
Imidacloprid	Insecticide	Drooling, vomiting,	Control beetles, fleas
		breathelessness, skin and	aphids, stink bugs,
		eye irritation	termites, locusts,
			carpenter ants, thrip,
Math aver for a 1 -	Insecticide	Descriptions distance	cockroaches
Methoxyfenozide	Insecticide	Respiratory distress	Target on lepidopterous
		syndrome, acute lung injury, bronchitis,	insects
Methamidaphos	Insecticide	Abdominal cramps, tearing,	On aphids, flea beetles,
methanneaphos	miscenerue	runny nose, headache,	worm, whiteflies, thrips,
		tightness of the chest	cabbage looper, potato
		agnutess of the chest	tubeworm
Methomyl	Insecticide	Respiratory tract, digestive	On spiders and ticks
		tract, trigger, chest pain	on spiders and tiers
Paradichlorobenzene	Insecticide	Skin and eye irritation,	Moths moth larvae
		headache, vomiting,	
		dizziness	
	1		

Conclusion

Pesticides are important part for agricultural production but continuously use of pesticides, results in some negative effects in the agricultural components and human health. The above discussion clearly highlights the adverse effects of pesticides have emerged in the form of decline on helpful organisms such as parasitoids, predators, pollinators and soil microorganism. According to their chemical nature, pesticides enter the organism, reaches in the food and hence influences human health. Therefore, it is needs to proper use of pesticides to protect our agriculture and health hazards. To reduce the use of chemicals, it is requires immediate action to promote the organic farming practices and try to find bio pesticides or natural enemies to control agricultural pests. **References**

- 1. Muller, C. (2018). Impacts of sublethal insecticide exposure on insectsfacts and knowledge gaps. Basic and Applied Ecology. 30: 1-10.
- 2. Karise, R. and Mand, M. (2015). Recent insights into sublethal effects of pesticides on insect respiratory physiology. Dovepress. 5: **31-39**.
- Kumar, N., Pathera, A. K., Saini, P. and Kumar, M. (2012). Harmful effects of pesticides on human health. Annals of Agi.Bio. Research. 17(2): 165-168.
- Jeephet. K., Kamsaard, S., Bhudhisawasdi, V., Kamsaard, S., Luvira, V. and Luvira, V. (2016). Association between pesticide use and cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention. 17: 3979-3982.
- Richardson, Maxwell, J. M. C. P., Madrigal, D., Wilkie, Alexa, M.H.S., Michelle, W. and Robert, E. (2017). Environmental health tracking improves pesticide use data to enable research and inform public health actions in California. *Journal of Public Health Management and Practice*. 23: 97-104.
- 6. Aktar, Md. W., Sengupta, D. and Chowdhury, A.(2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2(1): 1-12.
- 7. Magee, R. J. (1964). Pesticide literature and pesticide research. *Journal of Chemical Documentation*. 4 (4): **195-196.**
- 8. Soares, W. L., De Souza, P.M.F. (2009). Estimating the social cost of pesticide use: An assessment from acute poisoning in Brazil. Ecological Economics. 68: **2721-2728**.
- 9. Damalas, C. A. and Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issuis and risk assessment indicators. *International Journal Environmental Research Public Health*. 8 (5): **1402-1419**.
- Jallow, M.F., Awadh, D.G., Albaho, M. S., Devi, V.Y. and Thomas, B. M. (2017). Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Science of the Total Environment. 574: 490-498.

- 11. Bourguet, D. and Guillemaud, T. (2016). The hidden and external costs of pesticide use. *Sustainable Agriculture Reviews*. Springer. 35: **120**.
- 12. Stamati, P.N., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture.Front Public Health. 4: **148**.
- 13. Recena, M. C. P., Caldas, E. D., Pires, D. X. and Pontes, E. R. (2006). Pesticides exposure in culturama, Brazil-knowledge, *attitudes and practices*. *Environmental Research*. 102: **230-236**.
- 14. Mitra, J. and Raghu, K. (1998). Pesticides- non target plants interactions: An overview. *Archives of Agronomy and Soil Science*.43 (6): **445-500**.
- Karen, M. and Theiling, B. A.C. (1988). Pesticide side- effects on arthropod natural enemies: A database summary. *Agriculture, Ecosystems & Environment*. 21 (3-4): 191-218.
- Angeliki, F., Martinou, Menelaos, C. S. (2015). Effects of sublethal concentrations of insecticides on the functional response of two mired generalist predators. PLOS ONE 10 (12): doi: 10.1371.
- Rasmussen, J. J., Norum, U., Jerris, M. R., Larsen, P. W., Kristensen, E. A. and Eriberg, N. (2013). Pesticide impacts on predator- prey interactions across two levels of organization. Aquatic Toxicology. 140(141): 340-345.
- Theiling, K.M. and Croft, B.A. (1988). Pesticide side- effects on arthropod natural enimies: A database summary. *Agriculture, Ecosystems & Environment.* 21 (3-4): 191-218.
- Sasmal, S.K., Mandal, D.S. and Chattopadhyay, J. (2017). A predator- pest model with allee effect and pest culling and additional food provision to the predator- application to pest control. Journal of Biological Systems. 25 (2): 295-326.
- Bueno, A.B. F., Carvalho, G.A., Santos, A.C.D., Sosa-Gomez, D.R. and Silva, D. M. D. (2017). Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Ciencia Rural. 47 (6): Doi: 10.1590.
- Johnson, L.A., Welch, B. and Whitfield, S. M. (2013). Interactive effects of pesticide mixtures, predatore, and environmental regimes on the toxicity of two pesticides to red-eyed tree frog larvae. Environ Toxicol Chem., 32 (10): 2379-2386.
- 22. Hanlon, S.M. and Relyea, R. (2013). Sublethal effects of pesticides on predator- prey interactions in Amphibians. Copeia. 4: 691-698.

- Ngin, C., Suon, S., Tanaka, T., Yamauchi, A., Kawakita, K. and Chiba, S. (2017). Impact of insecticide applications on arthropod predators and plant feeders in cambodian rice fields. American Phytopathological Society. Doi 10.1094.
- Machtinger, E.T., Geden, C. J., Kaufman, P.E. and House, A.M. (2015). Use of pupal parasitoids as biological control agents of filth flies on equine facilities. Journal of Integrated Pest Management. 6 (1): doi: 10.1093.
- Ballal, C.R. and Verghese, A.(2015). Role of parasitoids and predators in the management of insect pests. New Horizons in insect Science: Towards Sustainable Pest Management. **307-326.**
- Rosenheim, J.A. and Hoy, M.A. (1988). Sublethal effect of pestides on the parasitoid Aphytis melinus (hymenoptera; aphelinidae). Journal of Economic Entomology. 81 (2): 476-483.
- 27. Basu, P. and Chakrabarti, P. (2015). Sub-lethal effects of pesticides on pollinators with special reference to honey bees. ResearchGate.
- Heylen, K., Gobin, B., Arckens, L., Huybrechts, R. and Billen J. (2010). The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal glan of the European honey bee, apismellifera. Apidologie. 42: 103-116.
- 29. Kumar, S., Joshi, P.C., Nath, P. and Singh, V. K. (2018). Impacts of insecticides on pollinators of different food plants. 7(2): 10.4172.
- Desneux, N., Decourtye, A. and Delpuech, J-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52: 81-106.
- Gill, R. J., Ramos-Rodriguez, O. and Raine, N.E. (2012). Combined pesticide exposure severely affects individual and colony- level traits in bees. Nature. 491 (7422): 105-108.
- Henry, M., Beguin, M., Requier, F., Rollin, O. and Odoux, J.F. (2012). A common pesticide decreases foraging success and survival in honey bees. Science. 336: 348-350.
- Pal, R., Chakraborty, A. and Chowdhury, A. (2006) Degradation and effects of pesticides on soil microbiological parameters – A review. International Journal of Agricultural Research. 1 (3): 240-258.
- 34. Usman, S. (2018). Soil challenges by pesticide: An illustrated concept for environmental awareness. Journal of Ecology and Toxicology. 2 (1): **109.**
- Kalia, A. and Gosal, S. K. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science. 57 (6): 569-596.

- 36. Yousaf, S., Khan, S. and Aslam, M.T. (2013). Effect of pesticides on the soil microbial activity. Pakistan Journal of Zool. 45(4): **1063-1067**.
- Digrak, M. and Ozcelik, S. (1998). Effect of some pesticides on soil microorganisms. Bulletin of Environmental Contamination and Toxicology. 60 (6): 916-922.
- 38. Prashar, P. and Shah, S. (2016). Impact of fertilizers and pesticides on soil microflora in agriculture. Sustainable Agriculture Review. 19: **331-361**.
- Stachniuk, A., Szmagara, A., Czeezko, R. and Fornal, E. (2017). LC-MS/ MS determination of pesticide residues in fruits and vegetables. Journal of Environmental Science and Health. 29: 446-457.
- Popp, J., Peto, K. and Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for sustainable Development. 33 (1): 243-255.
- Reeves, W. R., Guire, M. K.M.C., Stokes, M. and Vicini, J. L.(2019). Assessing the sofety of pesticides in food: How current regulations protect. Advances in Nutrition. 10(1): 80-88.
- 42. Mostafalou, S. and Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanism and perspectives. Toxicology and applied pharmacology. 268 (2): **157-177.**
- 43. Ye, Ming., Beach, J., Martin, J. W. and Senthilselvan, A. (2017). Pesticide exposurs and respiratory health in general populations. Journal of Environmental Sciences. 51: **361-370.**